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We consider in this paper a model for two-dimensional XY helimagnets, which was proposed in Pim-
pinelli et al. [J. Phys. Condens. Matter 3, 4693 (1991)]. In this model the usual spin waves and vortices
coexist with chirality degrees of freedom in such a way that the degeneracy space of the order parameter
is O2)XZ,. In Pimpinelli et al. the low-temperature behavior of the model was addressed, and an
infinite sequence of first-order phase transitions was shown to take place, due to the spin-wave coupling
between domains with opposite chirality. Here we investigate the same model at higher temperatures,
where vortices in the spin system and kinks on domain walls are thermally excited. The kinks in domain
walls are associated with noninteger (fractional) vortices. This is presumably a common feature also in
conventional helimagnets, where the Z, chirality is due to the twofold handedness of helices. We also
discuss the applicability of this scenario to the helimagnetic compound BaCo,(AsO,),.

PACS number(s): 64.60.Cn, 75.10.Hk

I. INTRODUCTION

We will start by describing the main characteristics of
the model of Ref. [1], which we will call XY(d) (d for
decorated) model. It consists of an array of two-
component classical spins (planar rotator model) sitting
at the nodes of a decorated square lattice. The decora-
tion is due to a spin situated at the center of each elemen-
tary square (plaquette) of the square lattice. The interac-
tions are pairwise, each corner spin interacting with its
four neighbors along plaquettes’ sides, with vertical and
horizontal coupling constants J, and J,, respectively, as
well as with its four neighbors at the plaquettes’ centers,
with couplings J,. Each decorating spin is also coupled
to its two neighbors (in y direction) decorating spins with
exchange J, (Fig. 1).

When plaquettes are decoupled (J, =0) and one kind,
say J,, of the exchange integrals is chosen antiferromag-
netic, the Hamiltonian allows for infinitely many lowest-
energy states. This is due to the decoupling of the
discrete chirality parameter in each column, so that
chirality can take either value (1) in every column at
the same energy cost. The cardinality of the degeneracy
space is thus countable, as opposed to the more common
degeneracy found in competing-interaction systems,
where a continuum of degenerate states usually exists.

The degenerate phases are discussed in detail in [1].
Summarizing, we find two uniform phases, and a (count-
able) infinity of states obtained mixing in any arbitrary se-
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quence domains of the uniform phases. These are a uni-
form helimagnetic phase, with wave vector Q=(1,a),
with cosa=J,/ IJy |, where a/2 is the angle between the
corner and the central spin and a uniform ferrimagnetic
state where the latter angle alternates in sign from corner
to corner. An equivalent description may be obtained as-
sociating to each link parallel to the y axis the discrete,
two-valued quantity (pseudo Ising spin) 7 (see below),
equal to the sign of the angle between adjacent corner
spins in a plaquette. Then, we can assign to each and
every phase in the degeneracy manifold a string of +1’s
and — I’s describing completely the relative phase. If the
phase is uniform (collinear or modulated), the corre-
sponding string has a definite periodicity, and it suffices
to indicate the latter to characterize that particular state.
For instance, in the helimagnetic phase a has the same
sign on each link, so that the periodicity is infinite: we
will use the axial next-nearest-neighbor Ising (ANNNI)
model convention, and indicate this phase as (). In
the ferrimagnetic phase, a alternates from link to link, so

FIG. 1. Schematic representation of the couplings in the
XY(d) model. Plaquettes can be coupled either through J, or
113 .
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that this phase is distinguished as (1). Degenerate with
these two, we find all integer-modulation states, {n ), n
from 1 to o, long-period phases, { ...nmpgr... ), and
completely aperiodic ones.

The set of zero-temperature degenerate states is there-
fore equivalent to the set of configurations of an aniso-
tropic Ising model. The fictitious Ising spins have infinite
interactions in the x direction, and vanishing coupling
along y. The coupling is only introduced by temperature
fluctuations of the real planar spins, so that the free ener-
gy of the original planar spin system can be exactly writ-
ten, for T—0, as the energy of a fictitious Ising spin sys-
tem, with T-dependent couplings. We were in fact able to
compute this effective energy, which turns out to be

2
E({T;>=E0(T)+-—T zAm——lsmrm , (1)
2 rm m ’

where the coefficients A4,, are all positive and asymptoti-
cally (m — o) equal to the constant

227273 cos*(@/2) (1+g,)(1+g, )
2
- 1 l+g,
X T+, g, 2)

The ground state of this Ising model coincides thus
with the low-temperature phase of the XY model. This
ground state is now unique, and corresponds to the ferri-
magnetic, (1) state. This finite-temperature selection of
one state within a degeneracy manifold is by now well
known (“order by thermal disorder”).

As for all anisotropic Ising spin systems, the ground
state of our model may also be described in terms of
domain walls, separating domains where a takes opposite
signs. At zero temperature the walls are noninteracting,
and their interaction goes as T2 at low T >0. This in-
teraction, which is due to spin-wave excitations, is repul-
sive, so that the wall system chooses the smallest nonvan-
ishing possible distance.

The scenario that we have sketched above refers to un-
coupled plaquettes. If we turn the interplaquette cou-
pling J, on, the degeneracy is lifted and the lowest-
energy state is either the ferrimagnet (J, >0) or the hel-
imagnet (J, <0). In the latter case, a competition sets in
between J, and spin waves, which would prefer the ferri-
magnetic state. This competition gives rise, at low T and
small J,, to an infinite sequence of first-order phase tran-
sitions at increasing 7, leading from () to (1),
through all intermediate integer-period phases {n ). The
competing terms are proportional to j,=J,/J; and
t%(t =T /J,), respectively, so that the phase boundaries
are straight lines in the j,-¢2 plane.

Note that in a truly two-dimensional (2D) model the
“phases” we mention are to be understood in the sense of
states characterized by ‘“‘quasi-long-range order,” that is,
by power-law decay of the correlation function. At
higher temperatures, this behavior should transform into
an exponential decay with a finite correlation length: It is
the celebrated Kosterlitz-Thouless (KT) transition, due to
topological excitations, called vortices, typical of the O(2)

symmetry. Our model differs from a conventional planar
one in two points. First, as we already mentioned, in the
uncoupled-plaquette situation the symmetry of the order
parameter is U(1) X Z,, so that the KT transition should
be accompanied by Z,, i.e., Ising-type, features, as a loga-
rithmically singular specific heat, for instance. Second,
another kind of excitation is present in the model, name-
ly, kinks on the walls. Such kinks have the peculiarity,
due to the background U(1) spins, that they are associat-
ed to fractional vortices [1], that is, to vortices of nonin-
teger strength. We will discuss this point at length in the
following sections.

Fractional vortices in magnetic models were a subject
of interest since the mid 1980s: the possible occurrence
of fractional vortices and the corresponding unbinding
transitions have been suggested for a model with a special
biquadratic exchange [2,3] and for Villain’s odd model
and homogeneously frustrated systems [4—6]. The latter
case could be experimentally realized in 2D Josephson
junction arrays and/or in *He-A films, were it not for
definite experimental difficulties outside our current in-
terest.

We will describe in this paper different scenarios, cor-
responding to different types of excitations and conse-
quent transitions. They are, in brief, (1) compound vor-
tex unbinding transition; (2) KT transition on an isolated
domain wall; (3) floating-phase transition, caused by the
fractional-vortex medium, in the system of domain walls;
and (4) Ising-like phase transition on the {1)-(2) phase
boundary. We will then discuss the applicability of these
scenarios to the XY helimagnet BaCo,(AsO,), (see the re-
view paper [7]), where some characteristics of the order-
disorder transition may be determined by the competition
of continuous and discrete degrees of freedom.

In the next section we will explicitly define the model
Hamiltonian, and give some more detail on the low-T
behavior. (We are not going to reproduce the long and
tedious calculations performed in [1], and we refer to
them if necessary. Some important formulas are never-
theless summarized in Appendix A.) In Sec. III we re-
view the various topological excitations in connection
with kinks and dislocations on the domain walls; in Sec.
IV the possible phase transitions are described. Section V
is for the discussion and conclusions.

II. THE MODEL HAMILTONIAN

It is time to introduce the reader to the characteristics
of the model in even more detail.

First of all, a word on terminology. We have called the
present model XY(d). In fact, we are considering planar
rotators, that is, spins with only two components, with
0(2) [U(1)] symmetry. The expression “XY model”
should be reserved to three-component spins [SO(3) sym-
metry], with vanishing coupling between the third, S?
say, spin components. Only in the latter case are out-of-
plane fluctuations possible and the system has true dy-
namics. However, the two models are believed to belong
to the same universality class, and to differ only quantita-
tively.

As we said, spins S are situated at the sites of a square
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lattice, and are coupled ferromagnetically and antifer-
romagnetically in x and y direction, respectively. More-
over, the four spins in the elementary plaquette are
effectively involved in a four-spin coupling via the in-
teraction with a decorating spin o at the center of the
plaquette. In turn, the latter are coupled to the two
neighbors in the y direction, with exchange J,. The ener-
gy of the system can be written as follows:

Eo=— 3 (,S,8,14,+J,5,5,1,)

- 2 JIS,'O'R—JZE(TR'UR+¢1 ’ (3)
(r,R) R ’
where J, >0, J, < 0, and, for definiteness, J, >0. R and r
denote sites on the decorating and main sublattices, re-
spectively, and ( ) means nearest neighbors.

For J, =0, the competition of opposite tendencies, i.e.,
to an antiferromagnetic arrangement along the y axis due
to J, and to a ferromagnetic one via the spins of the
decorating sublattice, results in a spin rotation by an
angle a [where ¢(r+a,)—¢(r)=%|a| and cosa/2
=J,/WJ,11,if J; <|J,|. The ground state has a degenera-
cy of 2”},‘ where N is the number of rows (the degeneracy
is therefore infinite in the thermodynamic limit). In other
words, as we said, the energy cost of chiral domain walls
is zero at T =0.

¢(r+2a,)+d(r+a,) _ ¢(r+a,)+¢(r)

1125

At finite temperature the free energy may be written as
an effective Hamiltonian for the chirality variables

_ ¢(rt+a,)—¢(r)
Te lp(r+a,)—a(r)|

in the form of Eq. (1). It is noteworthy that one may
define the chirality variables as

_ sin[¢(r+a,)—a(r)]
e |sin[¢(r+a,)—a(r)]| °

As we mentioned, Eq. (1) favors an “antiparallel” ar-
rangement of the 7 variables. A weakly antiferromagnet-
ic J,, however (a ferromagnetic J, would again favor the
ferrimagnetic state), favors the homogeneous helimagnet-
ic phase, with a helix pitch given as cosa=J,/ |Jy +J7,.
This interaction, which we rewrite here for clarity, acts in
fact between spins at plaquette centers, along the y direc-
tion, that is

E\=—J; 30 0R4q - @)
R

We can explicitly show that this term induces a
nearest-neighbor coupling of the chirality variables, 7’s;
to this end we approximate the spin product in Eq. (4) as
follows:

cos[¢(R+a,)—¢(R)]= cos 3

#(r+2a,)—¢(r+a,)

2

4 #(r+a,)—¢(r)

= cos

2

— cos¥(@/2)—sinXa/2)7, 7,4, -
y

Thus a weak antiferromagnetic interaction in Eq. (4) to-
gether with the effective interaction via spin waves ap-
pears to be responsible for the phase transitions from the
helimagnetic state at low temperatures (the sequence of
spin rotations from row to row is either --- +++ ---

i}

->(n +1>—><n>—-)<n—1>_,

(c0)s -

where any (n) structure includes alternating stripes of
+’s and —’s, of constant width »n:

R o R O Tt RN

where there are n terms enclosed in each pair of
parentheses. A qualitative sketch of the phase diagram is
shown in Fig. 2. (See also Fig. 5 of Ref. [1].)

III. KINKS AND FRACTIONAL VORTICES

A fascinating feature of the XY(d) model is that any
kink on a domain wall is simultaneously a fractional vor-
tex. We illustrate it through a somewhat naive picture in

.

or --+——— ---) to the high-temperature ferrimagnet-
ic state where 7’s alternate ( - - - +—+ — - -+ ). The sys-
tem undergoes such a transition through infinitely many
periodical phases:

—(2) (1),

Fig. 3. Let us calculate the total spin rotation along a
loop encircling a kink. We suppose ¢(r+a,)—¢(r)==xa
above/below the domain wall and ¢(r+a, ) —¢(r)=0.

Without the kink, we would expect to get O or any in-
teger multiple of 27w. However, we see that the formal
sum

2 [¢(r; 1) —¢(r;)]
i
taken along the closed contour in Fig. 3 turns out to give
2a. In order to avoid the inconsistency, a fractional vor-

tex of strength —a /7 (in units of regular integer vortices)
must be created around a kink. This results in a logarith-
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// 4

FIG. 2. Sketch of the low-temperature part of the phase dia-
gram. In the T2-J, plane the boundaries are straight lines, since
the free energy difference contains terms proportional to T? and
to J,.

mic contribution to the kink self-energy. Similar con-
siderations determine unambiguously the fractional vor-
tex “‘charge” which depends on the chiralities below and
above the domain wall and on the kink type. Four possi-
ble configurations are summarized in Fig. 4. Apart from
the kinks, fractional vortices also appear on the disloca-
tionlike domain-wall configurations which are represent-
ed in Fig. 5.

All the possibilities mentioned above are based on the
following construction as illustrated in Fig. 6: (1) there
are two adjacent rows which separate (from above and
from below) areas of definite chirality; (2) a fractional
vortex, situated between the two nearest rows, rotates a
spin field (with respect to a certain background) along the
contour 1--2-—3—4—1 by the angle 27f; (3) the con-
tribution of chiralities is zero along both semicircles,
1—2 and 3-—>4; the nonzero contribution can be pro-
duced by the two pieces, 3—2 and 4— 1, if their chirali-
ties are opposite; it results in the total spin rotation
caused by chiralities by the angle +2a. This construction
covers all the cases shown in Figs. 4 and 5. It is very im-
portant to realize that 27 f =2a is defined modulo 27,
due to gauge invariance of the Hamiltonian [13]. In oth-
er words, the vortex charge is defined through the func-
tion {x} as follows:

f= [g— ]=%—nint

) (5)

T o

i 4 1
i

L-1 7 + i
5 !

A D O S

|
i 1

Ly ¥ _ i
| I
| |
[, [ U 4

FIG. 3. A Kkink on a domain wall which separates two re-
gions of negative (—) and positive (+) chiralities. The total
misfit of spin orientation after going once around the contour is
[—L,+L,—(L,—1)+(L,+1)]a=2a.

(a) i (b) '
__® 6
(c) d)

FIG. 4. Four possible configurations of fractional vortices,
attached to domain walls, and corresponding chiralities.

where nint(x) is the nearest integer to x. Note that, ac-
cording to this definition, —1 <{x} <1.

We show fractional vortices schematically in Figs. 7
and 8. The spin fields depicted in Figs. 7 and 8 are
equivalent to the kink and dislocationlike configurations
of Figs. 4(a) and 5(a), respectively.

An important point is that fractional vortices are possi-
ble in conventional XY helimagnets where chirality is due
to an isotropic competition of interactions. On the square
lattice, for instance, the part of the energy responsible for
helimagnetism has a form

E'hel= —"1 2 (Sr'sr+ax +Sr'sr+ay)
T
—J3 2 (Sr'sr+2¢zx +S,'S, +Zay) ’ (6)
r

where J, <0 and |J4]/4>|J,| (on the square lattice J,
couples third-nearest neighbors). The addition of next-
nearest-neighbor coupling J,, with J, negative and
|J,|=J, /2, allows for a helical ground state modulated
in either the (1,0) or (0,1) directions. An additional Z,
degeneracy is thus present in this case. A slightly aniso-
tropic J; in (6) lifts this degeneracy and makes the prob-
lem completely equivalent to our own. However, at vari-
ance with the XY(d) model where the domain-wall width
is one lattice spacing, an equilibrium domain-wall
configuration generically involves a gradual change of the
spin rotation angle from —|a| to +|a|. On the other

= © R )
(a) (b)
@ - Q.+
(c) @

FIG. 5. Four possible configurations of fractional vortices,
attached to dislocationlike domain walls, and corresponding
chiralities.



49 HELIMAGNETISM IN XY MODELS: DOMAIN WALLS, ...

///’-_—‘ \\\\\\ -
Vs ~
s ~
s \\
/
/ N\
\
27 1
O :
\ 4
3 \ /
\, /
\\ /
N //
\\\\ ////
———— T

FIG. 6. See explanations in the text.

hand, this variation could be represented as a set of
“minimal” domain walls separating regions of successive
spin rotations

—al - la_laglaylayl -+ - la .

Formally, a fractional vortex on a domain wall separating
the areas a;|a; ., has a charge +(a;,;—a;)/2m. These
charges should decrease exponentially with fj | and the to-
tal charge is again t+|a| /7. Coarse graining on the typi-
cal wall width, we would thus expect to obtain a picture
similar to that in the present model.

A. Towards the fractional-vortex unbinding transitions

The logarithmic contribution to the self-energy of vor-
tices, as well as to their interaction energy, can be found
directly from the form of the spin Hamiltonian in the
long-wavelength limit. The prelogarithmic factor enables
us to perform quite reasonable estimates of the vortex un-
binding temperature, of the helicity modulus, and of the
critical exponents at the KT transition temperature. In
the framework of the present model, the long-wavelength
expansion of E, [Eq. (3)] has the following form:

Eg~Egs+1 [d*[],(3,02+7,3,60], Y
where

T =J,+73 /1), T,=IJ,|+J1,—J}/1J,]
from the ferrimagnetic side (J, >0) and

T = +J} /(| + 175D,

T, =11+ 1T, =33 710, | + 17, ])

from the helimagnetic side (J, <0). The quantities 0 are
the angular deviations of the spins from their ground-

—— S
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FIG. 7. Spin field of the fractional vortex of the charge —§,
the analog of Fig. 4(a).
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FIG. 8. Spin field of the fractional vortex of the charge — %,
the analog of Fig. 5(a).

state orientations, and E g is the ground-state energy.

The prelogarithmic factor in the fractional-vortex self-
energy, which is computed from Eq. (7), differs from the
corresponding value for an integer vortex, 71/ J.J,bya
factor {a/m}2. The inverse value of the universal jump
of the helicity modulus as well as the critical exponents
differ by the same factor. It also affects the estimate of
the KT transition temperature, which would be

TKTz%K, where K =V/'J, T,

if the system were not subjected to the fractional-
vortex unbinding transition at a lower temperature,
TszTKT{a/‘IT}Z.

B. Compound fractional vortices

However, even Ty is not the lower theoretical limit
for a transition in this system. Let us consider a com-
pound fractional vortex of “double” charge {2a/w} [see
definition of {x} in Eq. (5)], consisting of two single vor-
tices. It can be built as in Fig. 9. If |{2a/7}| <|{a/n}|,
then the compound vortex medium undergoes an unbind-
ing transition at a temperature

2
22].
m

Compound fractional vortices of smaller effective
charges also can apparently be built up. First, one can
assume that the core energy of the nth-order vortex,
g€.(n), grows with n. Second, since it is logarithmically
divergent, the self-energy of the compound vortex of the
nth order can be written as ¢g,(n)InL, where
g,(n)< {na/m}?. Hence we can establish a hierarchy,

Toy=Tkr

o
,_55(—) (b)

a

)
- o
©
FIG. 9. Examples of fractional vortices of double vorticity

attached to the same domain wall (a), (b) and to the nearest
domain walls (c).
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according to which only those compound vortices are
effective whose charge satisfies the following inequalities:

(8)

The selection according to the rule in Eq. (8) is illus-
trated in Fig. 10, where the compound vortex self-energy
is shown vs InR /r,. Doubtless, the higher the vortex or-
der which satisfies the inequalities of Eq. (8), the smaller
its energy in the thermodynamic limit. However, in a nu-
merical or real experiment with a system of necessarily
finite size, InR /r;, cannot be larger than 20. This cir-
cumstance significantly restricts the set of candidates de-
scribed in (8) which could be really observed in a numeri-
cal study of the model, or in a real system. In addition,
the core energy of compound vortices grows with the
number of the constituents, but it is not simply propor-
tional to the total number of kinks involved in a com-
pound vortex. For example, if two simple vortices are in-
volved in a double vortex, satisfying the condition (8), the
latter behaves on small distances as two simple fractional
vortices plus an integer one, which compensates the dou-
ble charge, 2a/mw, if it falls out of the interval
(—1/2,1/2). The interaction energies of the constitu-
ents, separated by the distances r,,, 7,3, and r3;, where 1
and 2 are the fractional vortices and 3 the integer one,
may be written in the form
2oy

In—%+ %
ro

733 3
In—+In— |,
ro Fo

o

£.(2)=2¢,+el— .

where £ is the core energy of the integer vortex. We
also note that g, can be estimated as proportional to
(a/m)? for small @. Therefore it appears that the actual
observation of compound vortices is quite doubtful.

It could be of interest to illustrate with a concrete nu-
merical example the competition of compound vortices,
as described by the algorithm Eq. (8). Let us suppose
that the primary fractional vortex is of the charge 0.416.
The set of compound vortices satisfying inequalities (8) is

e(n)InL

ln(R/l'o)

FIG. 10. The initial stage of the competition of fractional
vortices vs the characteristic scale.

as follows: 0.416(1), 0.168(2), 0.080(5), —0.008(12), etc.
Estimating the logarithmic energy gain and the loss due
to the core contribution, one finds that the compound
vortex configuration of the fifth order would compete
with the second order, were it not for the finite size of a
realistic system. Actually, for the competition mentioned
above to be effective the size of a system, L, should satisfy
the inequality In(L /r;) = 150.

Concluding this section we briefly discuss the renor-
malization procedure applied to the medium of vortices
with single and double charges. Details on the equations
describing the evolution of the effective temperature K ~'
and the bare fugacities y; and y, vs the rescaled lattice
constant are given in Appendix B. [In such a renormal-
ization procedure we follow José et al. [8].] The renor-
malization flows in the y, —y, —K ~! space are mainly
determined by the relevant y, coordinate, because the re-
normalized transition temperature T, due to double vor-
tices is smaller than its single vortex counterpart. How-
ever, if the bare fugacity y, is small enough, a finite sys-
tem could mimic the transition caused by single-charge
vortices (y,—0), which occurs at some renormalized
temperature Ty <T,;. In fact, it is true that y, increases
if T, >T,,, but if the size of the system is insufficiently
large there is the possibility that y, remains rather small.

Phase transitions due to compound vortices are cer-
tainly of great theoretical interest, but in the remainder
of this paper we restrict ourselves to consideration of
phenomena associated with the simplest fractional vor-
tices.

IV. PHASE TRANSITIONS
IN THE DOMAIN-WALL MEDIUM

We discuss now the effects of the vortex unbinding on
the phase diagram of Fig. 2. We remind the reader that
this phase diagram, obtained in [1], describes the set of
transitions in the spin-wave interacting domain-wall
medium, from the uniform helimagnetic state, which is
mapped onto the ferromagnetic arrangement of (pseudo)
Ising spins, { « ), to the ferrimagnetic state, mapped
onto {1). Each striped phase, {n ), is characterized by a
concentration 1/n of domain walls. This concentration
vanishes on the boundary between the set of striped
phases and the helimagnetic region. We investigate in
the following the modifications of Fig. 2 at higher tem-
peratures, where topological excitations become effective.
We distinguish three regimes, namely, low, intermediate,
and high domain-wall concentrations. We will essentially
follow this scheme: Going from one of the next three
subsections to the following one, |J,| decreases, that is,
we move on the phase diagram from { « ) to (1), while
within each subsection J, is kept constant and the tem-
perature is increased.

A. KT transition on the isolated domain wall

On the first-order [1] transition line separating the hel-
imagnetic state from the set of ferrimagnetic states {n ),
the concentration of domain walls is zero, but a finite
number of them does exist. We are therefore led to study
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the behavior of an isolated domain wall.

At very low temperature the wall is straight, but kinks
are thermally excited as T increases. The wall starts thus
to fluctuate from row to row, each kink being accom-
panied by a fractional vortex. Note first of all that dislo-
cationlike configurations—and the corresponding vor-
tices (see Fig. 5)—are negligible, because these
configurations are energetically too costly. As in ordi-
nary KT transitions, at low temperature the constituents
of the neutral fractional-vortex gas attached to the wall
are bound in pairs. Hence the wall is localized. The vor-
tex gas undergoes an unbinding transition (of the KT
type) at

T\p=2

2
a
P } TKT Iy (9)

where the wall starts to diffuse freely, that is, it delocal-
izes. The factor 2 in Eq. (9) occurs because the entropy
of a vortex attached to a (one-dimensional) wall is of a
factor 2 smaller than the entropy of a vortex in the plane.
These simple free energy arguments can be easily checked
using scaling arguments. Actually, the partition function
which includes spin-wave and fractional-vortex degrees
of freedom can be mapped onto a sine-Gordon action,
i.e., onto an action for spin waves in the presence of a
symmetry-breaking cosine field [8]. In terms of the spin-
wave variable O’s, such a field is of the form
cos(27K {a/1r}26). Its scaling dimensions would be (see,
for example, [8,9]) A=2—7K {a/7}? in 2D, were it not
for its reduced spatial dimensionality: In the present
case, vortices are attached to a line—the domain wall—
and thus live in an effectively 1D space. This cir-
cumstance transforms the eigenvalue A of the symmetry-
breaking field into A'=1—7K {a/7}2.

B. Domain walls and possible transitions
in intermediate phases

We now go a step further inside the phase diagram,
where the (n) striped structures are stable at equilibri-
um. We suppose n to be moderate. Inside this structure
dislocationlike excitations are very costly, and can be ig-
nored. A kink on a wall now has two effects. First, it
creates a fractional vortex with a logarithmical energy
cost, as always. Second, it introduces a defect in the wall
arrays, since beyond the kink the wall-wall separation is
n —1 on one side and n +1 on the other. This defect has
an energy cost proportional to the wall length on which it
exists. Thus kinks will only occur in close pairs.

It is useful to describe this situation again in terms of
domain walls. This time, however, we consider domain
walls within the domain-wall medium. It is thus natural
to speak of secondary domain walls, which are situated in
coincidence with a “wrong” n +1 or n —1 interwall dis-
tance in a regular {(n) structure. These secondary
domain walls will be denoted as w," or w, for n +1 or
n —1 separation on an {n) background, respectively
(Fig. 11). If we are inside the {n ) phase, very close to
the (n)-(n +1) phase boundary a w," secondary wall
has a positive, but not large, free energy; we call it a light
wall. On the other hand, in the same part of the phase
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diagram a w, wall has a quite large positive free energy,
and it will be termed heavy (Fig. 11). Of course, close to
the (n —1)-(n) boundary the situation reverses: Now
w, is light and w,’ heavy.

In fact, we showed in [1] that all the {(n)-{(n +1)
transition lines are first order, so that the two phases
coexist at equilibrium there. Hence a finite number of
light walls exists near such boundaries. These walls are
very widely separate, so that we can treat them as isolat-
ed. As for primary walls, secondary walls fluctuate,
creating kinks. However, kinks on secondary domain
walls are not so costly in energy, because (see Fig. 11)
each of them is associated to a kink on a primary wall,
but in such a way that the corresponding fractional vor-
tices have charges of alternating signs. If an even number
of them exists, the resulting screening effect cancels the
logarithmic divergence in the energy, so that at a high
enough temperature the secondary walls fluctuate freely.
Note that an important difference exists between the
present situation and the isolated domain wall studied in
the preceding subsection. In that case, vortices are also
arranged in a one-dimensional fashion, but their charges
need not be—and are not in general—alternating along
the wall. This is instead always the case in the present
situation.

We can thus consider the secondary domain wall as a
one-dimensional gas of alternating charges + f, with loga-
rithmic interactions—the fractional vortices of Fig. 11,
aligned on the secondary domain wall as pearls on a
necklace. Such a problem has been solved by Anderson,
Yuval, and Hamann in the early 1970s [10]. We shortly
outline their approach in Appendix C. Using the results
of [10] we can estimate that unbinding of fractional vor-
tices occurs above approximately f2Tgr.

The free energy per vortex can now be used in the cal-
culation of the effective fugacity of a kink, z. From
another point of view, z can be interpreted as the kinetic
energy of a quantum particle in the framework of a
transfer-matrix approach. In this framework a fluctuat-
ing wall is mapped to the space-time trajectory of a gas of
free fermions, {cT,c }, with Hamiltonian

+ S O
- g+
+ = +
(a)

P! ’"_“*Q—@»__ - T
j{ - +
(b)

FIG. 11. (a) Mapping of a secondary domain wall onto a 1D
set of fractional vortices. (b) One of the manifold configurations
after application of the inverse mapping. Secondary domain
walls are shown as dashed lines.
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Ay
H=——T—2_c,7”c,.—zz(ci*c[+1+H.c.), (10)

where A" is the self-energy per unit length of the secon-
dary domain wall, as computed in Appendix A [see Eq.
(A5)]. Note that z can be roughly estimated through the
vortex core energy, and that the latter does not vanish at
zero temperature, its finite limit being a function of the
relevant exchange constants, J,, J,, J;, and J,. On the
contrary, the domain-wall energy is proportional to T2,
for both primary and secondary walls, and thus vanishes
with T. The phase transition from the low-temperature
phase with straight—on average—secondary domain
wall into the high-temperature phase where the wall
propagates diffusively in the plane (as in the case of the
isolated domain wall), occurs at a temperature which can
be evaluated by equating the kinetic and the self-energy.
It is thus given by
A;L(T(ﬂn,n+l))

(n,n+1)y —
2T = (1)

Note that at low but finite temperature the A’s are
positive. Hence, for all temperatures below Ty""*!),
defined by Eq. (11), a secondary domain wall is energeti-
cally unfavorable. At T(ﬂ”’"“) the free energy of w,"
secondary domain walls vanishes, to become negative at
higher temperatures. Thus secondary domain walls proli-
ferate, and start to interact; the competition of the
single-wall energy gain with the repulsive interwall in-
teraction leads to the setting in of the so-called floating
phase (fl), characterized by quasi-long-range order in the
diluted gas of {(n +1) pieces on the regular {(n) back-
ground. Since this transition is of the Pokrovsky-Talapov
type [11], the concentration of secondary domain walls

varies with temperature as \/ T— T(ﬂ””' D

The transitions into the floating phase of w,” walls on
the {(n ) background and the transition of w,; walls on
the (n +1) background are not symmetrical: The criti-
cal temperature of the former is higher than that of the
latter, as we explicitly show in Appendix A [see Egs. (A8)
and (A9)]. This implies that at the critical temperature
T+ which lies on the first-order {n )-{n +1) tran-
sition line, the concentration of w, ,; domain walls stays
finite, while that of w,f vanishes continuously. At this
point the boundary splits with a cusplike behavior (see
Fig. 12). Beyond Ty the {n )-fl transition is continuous,
while the (n +1)-fl transition is first order: Along this
part of the boundary the transition proceeds from the
regular chiral structure into the floating chiral structure
with a finite concentration of secondary domain walls.
The point determined by Eq. (11) appears thus to be a tri-
critical point, where a second-order and a first-order line
meet. Upon further increasing the temperature, the
{n +1)-fl transition also becomes continuous at a second
tricritical point (Fig. 12).

Note that in fact there are two boundaries dividing,
say, the {n) phase from the floating phase: We denote
them (n )" -fl and (n )~ -fl, since they originate from the
(n)-{n+1) and {(n—1)-{(n) first-order transition
lines, respectively. As it is clear from the topology of the

o T floating
2 chiral phase
o
g {n-1>
g
= {(n>

(n+1>

-

__‘]2

FIG. 12. Fragment of the phase diagram in the J,-T plane.
The first-order transition lines are thick, the continuous transi-
tions into floating phase are shown in thin lines.

phase diagram in Fig. 12, these two boundaries must
meet at some 7. This temperature should lie on the
geometrical locus of points of the n-modulated region,
where the energies of the two types of secondary walls in-
volved, w,} and w, , coincide. This locus certainly exists,
because, as we said above, the w,,Jr walls are heavy (with
reference to their energy cost, see above) and w, walls
are light near the (n ) -fl boundary, whereas they ex-
change their role near the (n ) " -fl line. We would specu-
late that this meeting point of the phase boundaries is a
critical point in the universality class of the spin S =1
quantum chain with planar anisotropy (for details of the
transfer-matrix approach in analogous problems see [12]).
This point will be further addressed in a separate paper.

C. Phase transitions on the { 1)-{2) boundary

This case differs from the previous one because the fer-
rimagnetic (1) phase has, besides fractional vortices,
Ising-like excitations in the form of solitons (2a soliton).
This point has been also briefly considered in [1]. In oth-
er words, together with the kinklike excitations on the
domain walls, described in the transfer-matrix formalism
by the kinetic energy term of free fermions, there exists a
relevant contribution, describing the creation (annihila-
tion) process of two fermions. Although the fugacity of
such an excitation is smaller than that of the one shown
in Fig. 11, the process of creation (annihilation) of a
dislocation in the case under discussion is relevant, be-
cause a dislocation only consists of two “fermions.” Ac-
tually, considering the general case of the fermion
creation from the background (n) (wrong pieces
{(n£1)), one obtains the total number of constituents
(secondary domain walls) of the simplest dislocation loop
being equal to 2n. Kosterlitz and Thouless [14] derived a
criterion for stability of a solid against formation of free
dislocations. It states that the solid is stable if p2>8,
where p is related via |b|=pa to the minimum Burgers
vector b of the dislocations. Applying this criterion to
our case with p =2n, we conclude that the inequality
(2n)*> 8 is not satisfied only for the phase {1)(n =1), so
that the transition from this phase to the floating one is
forbidden. It undergoes instead an Ising-like transition
directly to the disordered (paramagnetic) state [1].

In Fig. 13(a) we show the spin configuration which
characterizes one type of 2a soliton. In terms of the pri-
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FIG. 13. 2a soliton on the (1) background; (a) spin
configuration; (b) equivalent dislocationlike configuration, em-
phasizing primary domain walls (solid lines), secondary domain
wall (dashed line), and fractional vortices.

mary and secondary domain walls and the fractional vor-
tices, the soliton is equivalent to the excitation sketched
in Fig. 13(b). This is a dislocationlike configuration of
the secondary domain wall. Because of the two fractional
vortices forming the core of the dislocation, its fugacity is
z;<<z. Described in the framework of the transfer-
matrix method by means of fermionic variables, the
equivalent Hamiltonian is a generalization of Eq. (10):

Af
H=T zci’fc,.——z E (c,-Tc,-+l+H.c.)
i i

—2z; 3 (cfef +Hoc.) . (12)

Although the phase-transition line is formally the same
as given by Eq. (11), the physical content is different due
to the last term in Eq. (12), i.e., the statistical model cor-
responding to the 1D quantum Hamiltonian of Eq. (12) is
the anisotropic Ising model.

Again, the phase equilibrium line {1)-{2) splits in a
nonsymmetrical way: the part of the cusp from the (2)
phase side corresponds to the modulated-floating transi-
tion, as found generically and as shown in Fig. 12. In the
proximity of the (1) phase, the quasi-long-range-ordered
floating phase transforms into a disordered state. A simi-
lar behavior has been found for the 2D ANNNI model by
Villain and Bak [15]. However, the possibility also exists
that the transition line separating the disordered and
floating phase ends at the tricritical point on the {(2)-fl
boundary line. For the reader’s convenience we summa-
rize all our results in Fig. 14, which contains a sketch of
the complete phase diagram of the model.

V. DISCUSSIONS AND CONCLUSION

Fractional vortices and domain walls, to which vor-
tices are attached, are topologically available in systems
with nonzero chiralities. Among other representatives
helimagnets should be mentioned. In this paper we give
the rule to construct a fractional vortex which is either a
kinklike or a dislocationlike configuration on a domain
wall. Its “charge” is determined unambiguously through

, Floating

T2

Ferri

Heli

_ J2
FIG. 14. Qualitative sketch of the complete phase diagram of
the model, as resulting from the discussion of Sec. IV.

chiralities and topological properties of kink and/or
dislocation.

Certainly, the topological excitations like domain walls
and fractional vortices influence each other. From one
side, fractional vortices cannot exist outside domain
walls. On the other hand, they drive the domain-wall
critical behavior.

Summarizing our results, we have extended to higher
temperatures the investigation of the model of Ref. [1].
The resulting phase diagram, in the region of the cou-
pling constant space where the model’s ground state has
helimagnetic and ferrimagnetic spin arrangements, exhib-
its the following features.

(1) An infinite set of spin-wave-induced first-order
phase transitions from the helimagnetic state ({ o )—
chiralities are ‘“ferromagnetically’” ordered) to the ferri-
magnetic state ({1)—‘“antiferromagnetic”’ ordering of
chiralities).

(2) Each line of two-phase equilibrium (n +1)-(n)
splits at some finite temperature, forming a cusp, with ap-
pearance of the intermediate floating phase between the
two lines. The system undergoes the continuous
floating-phase transition from the side of the (n ) phase,
whereas the line of the first-order phase transition contin-
ues beyond the triple point, separating the {n +1) and
floating phases, and transforms into the line of continu-
ous floating transitions.

(3) An exception to this general scheme occurs on the
boundary (2)-(1) where the line splitting is accom-
panied by the appearance of a branch of the Ising-like
transition into the phase in which secondary domain
walls on the (1)-background are disordered. There are
no principal changes in the phase-transition picture from
the side of the (2) phase as compared with the general
scheme. It is nonetheless clear that disordered and float-
ing states must be separated by another phase-transition
line.

The situation in more traditional —that is, with isotro-
pic Hamiltonians—helimagnets seems to be not so excit-
ing as in the XY(d) model, because there is no special
smallness of the domain-wall energy. In other words, in
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the XY(d) model fractional vortices have a significant
effect upon the chiral floating-disordering transitions.
The possible phase transitions in traditional helimagnets,
as mentioned in the Introduction, could be analyzed in
the style of Ref. [5]. Unfortunately, such a general
analysis cannot give an unambiguous answer about the
sequence of the phase transitions and their universality
classes (see, also, discussion in [4]). We would like any-
way to mention that our model is not so academic as it
might seem; we have already shown in [1] that it is possi-
ble to perform exactly the statistical trace over the
decorating spins at plaquettes’ centers, when they are not
coupled, so that one obtains an effective, temperature-
dependent Hamiltonian involving only spins on a simple
square lattice. The price to pay is that spins within a pla-
quette are now coupled also through a four-spin interac-
tion, of the form

BT 118, +S,+S;+8,| ,

where 1 to 4 index the spins on the elementary square.
Note, however, that at low temperature we may approxi-
mate the absolute value by its square. Since spins are
constrained to unit length, |S;|2=1, the square of the to-
tal spin of the plaquette is exactly rewritten in terms of
two-spin couplings only:

BlJ | [4+2 3 S;-S;|. (13)
(i<jp=1
The resulting Hamiltonian hence contains nearest
(J,J%) and next-nearest- (J,) neighbor couplings of the
form
j)lrz_Jx+2B'J1‘ )

J=—J,+28J,|,
J,=28J,| .

If we now couple third-nearest neighbors in this simple
square lattice, we get for the Hamiltonian the more famil-
iar form

H=-— 2 (j)lcsi'si+ax +~7}1’Si’si+ay )_-72 2 (8;-S; +a, +a )

i

=T 2 (Si'si+2ax+si'si+2ay) . (14)

Actually, this (effective) Hamiltonian is exact if the
decorating spins are taken as continuous variables instead
of XY spins, since then a Gaussian integration over these
variables leads to Egs. (13) and (14). As we said before,
the anisotropy in nearest-neighbor couplings lifts the de-
generacy between (1,0)- and (0,1)-directed helices [16].

Finally, we outline the very intriguing experimental sit-
uation (see [7], and references therein) which originated
our interest in topological excitations in helimagnets.

BaCo,(AsQ,), is a quasi-2D XY helimagnet. Responsi-
ble for the magnetic properties are the spin-i Co ions
which are arranged in the honeycomb lattice structure.
The relevant exchange constants, derived from the spin-
wave dynamics, involve nearest-neighbor as well as
third-nearest-neighbor spins. The low-temperature mag-
netic structure can be suitably represented as two com-

penetrating triangular sublattices with helix wave vector
Q=(0.265,0), in units of 27.

The regular spin rotation angle from one sublattice to
the other is less than 15°. The transition temperature ap-
pears to be approximately + of a nominal KT integer vor-
tex unbinding transition. In spite of the well-defined
Bragg peak at the helix wave vector Q, the spin-wave ex-
citation displays overdamping around q=Q. However,
its “optical” branch is propagative and shows a gap
Ay=1.5 meV at q=0 which contrasts with the estimate
Ay,=3 meV, obtained from the specific heat measure-
ments. Also, the fitting of the specific heat curve shows a
T? behavior below 2 K, which indicates the existence of
the Goldstone mode in the spectrum (@, ~|q—Q|). In
addition, the specific heat singularity around T, is too
strong to be related to the KT transition exclusively:
domain walls must be involved, at least.

So, the experimental problem still awaits a detailed
analysis, which should also involve Monte Carlo simula-
tions. We will report on them later. As a preliminary es-
timate we would like to speculate that the unusual tem-
perature of the vortex unbinding transition could be asso-
ciated with a gas of fractional vortices of vorticity ~1,
attached to randomly distributed domain walls, separat-
ing regions of opposite chiralities. This is not incon-
sistent with the information concerning dynamical excita-
tions. Actually, the excitations which contribute to the
thermodynamics could be fractional vortex-antivortex
pairs, coupled in “quasimolecules.” Both constituents
are attached to domain walls. On the other hand, one
considers a single fractional vortex in the image of the 2«
soliton, propagating along the domain wall without
damping. Therefore we need to assume that a randomly
distributed domain-wall network enters the scene. How-
ever, the reason for its existence is not yet clear.
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APPENDIX A

We use here formulas concerning wall-wall interactions
that were derived in [1]. One can easily check that the
self-energy of a single domain wall against the helimag-
netic background is

g, =—2 3 p4,,
p=1
where A4, is defined in the text. Note that 4, <0 and
A4,>0(p22).
The interaction of domain walls separating the areas of
opposite chiralities is not so easy to compute. We quote
the result of Ref. [1]:

(A1)
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=

F,(,M)z(_l)m—lfn’ fn=4 EpAn+p . (A2)
p=1
In Eq. (A2) n denotes a distance between two walls,
whereas (m —1) indicates how many domain walls are
situated between them. Equation (A2) shows that the
wall-wall interaction is not reduced to a two-body poten-
tial. The effective attraction of the next-nearest walls re-
sults in a simple sequence of phase transitions from the
helimagnetic to ferrimagnetic state through infinitely
many intermediate states according to the following
scheme:

helimagnet=( o ) — - - -

—{n)— -+ —(1)=ferrimagnet .

Within the region of the phase diagram where one
periodical configuration {(n) is stable, we can define
secondary domain walls, w,,+ and w, , coinciding with
stripes of widths n +1 and n —1, respectively. The
energy of a secondary domain wall is positive even
on the lines of phase equilibrium {(n+1)-(n) and
(n)-(n—1). Below we explicitly derive the energies of
different types of walls for the former case.

The {n)-{n+1) phase-transition line is defined by
the following equation:

g, 3 (—1P7f,,
p=1

1
n—+1

et S(—1P71f |, (A

p=1

whereas the energy of a secondary domain wall w, is
given by the expression

Ayw)=—1
n

€yt i (—l)p—lfp,, ]

p=1

+ 3 (1P D =) . (AD)
p=1

Substituting €,, from Eq. (A3) into Eq. (A4) one obtains

the energy of the w,” wall on the line of (n ) and (n +1)

phase coexistence:
J

An,n+1(wn+)—An,n+1(wn—+l )= 2 (—l)p_l[p(fpn+l~fpn+p—l)+(P _2)(fpn+p —fpn )]

p=1

but differ from each other beginning at p =3.

APPENDIX B

This appendix is for deriving the renormalization
group equations. The derivations follow the general
scheme performed in [8].

We consider the case of two kinds of incommensurate
vortices which are referred to in Sec. Il A as vortices of
the single and double charges. The partition function can

An,n+l(wn+)= 2 (_l)p_l
p=1

x[pfpn+l—(p_l)fpn—fpn+p] :

(AS)
Performing the analogous calculations for
A, , +1(w, 1), i.e., the energy of secondary domain wall

w, +1 on the line of the (n )-{n +1) phase boundary, we
obtain

Bpir(w,4)=3F (—1P7!
p=1

X[prn+p—l)_(p —l)fpn +p -fpn] .
(A6)

It may be of interest to compare these results with the
energy of the w,” secondary wall, which can be interpret-
ed as a light wall on the boundary {n —1)-(n) and
which plays the role of a heavy wall on the {(n )-(n +1)
equilibrium line:

A,,,,,H(w,,—): 2 ("l)p_l
p=1

X[pfpn—l_(p+l)fpn+fpn+p] .
(A7)

Performing the large-n expansion and keeping in mind
that f, <n ~* (k =4 in two dimensions) we get

-— ~ +
Ay n 1w, )=4,, (w,)

o kk+1) & (=1P(p—1)

, (A8)
pk+2 p§2 pk+l
. _kk+1) 2 (=12 Yp+1)
An,n+1(wn )< 2nk+2 z k+4{’ : (A9)
p=1 p

Comparing estimates from Eqs. (A8) and (A9) we con-
clude that the energy cost of light walls is much smaller
numerically.

The curious peculiarity of Egs. (A5) and (A6) is that al-
though A, , . (w, ;) and A, , ;(w,") coincide in the
main order [see Eq. (A8)], they are not identical:

(A10)

r

be suitably decoupled into the spin-wave part and the
part due to vortices (we omit all the contributors except
single and double fractional vortices):

Z(y1'y2)=zswzv(yl9y2) . (Bl)

For the spin-wave partition function we use the conven-
tional x —y symmetrical form:

+o dO(r)
H f—co 2T

K
st= ?

l exp

2[V0(r>]2] . (B2)
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Concerning the action of vortices it can be written as

an lny1+2 ni(r)Iny,

+ 3 27Km(r)G(r;—r

(r1ry)

A, {m,m,}
,)m(r,) ,

(B3)

where n; ,(r) is the “charge-occupation” number of frac-
tional vortices, single and double, taking the values — 1,
0, and +1. m(r) can be expressed as

m(r)=mn,(r)+m,n,(r) . (B4)

Both vortex subsystems are supposed to be neutral, i.e.,
>, n(r)=3, n,(r)=0. G(r) behaves as Inr/r; at dis-
tances much longer than the core size, r,. Supposing the
small-fugacity case to be correct for a true reproduction
of the critical behavior, we perform a kind of low-
temperature expansion for a gas of vortices. In such ap-
proximation the two groups of vortices of single and dou-
ble fractional vorticities can be treated as independent be-
cause of the incommensurability, in general, of their
charges.

The spin-wave contribution to the irreducible spin-spin
correlation function like

(ei6=0))
is

8sw = exp[—G(r—r1')/27K],

whereas the contribution due to vortices is

g."=exp[—7G (r—r')m?Z,; /4],

where =, =m? ¥ (n,(0)n;(r))
r
Besides, 2 can be estimated as
—2y2exp[ —27KG (r)m}?).

These correlation functions are the basis for perform-
ing the traditional renormalization procedure according
to which the following renormalization group (RG) equa-
tions can be obtained:

Xz‘ll

Z=3 T [ taxy, [ Cdxg o [

dx | exp

where T=2exp(—e,/T) is the fugacity of vortex cores;
a is a cutoff of the order of the lattice constant. In Eq.
(C1) the sum runs over n vortex pairs. Taking the parti-
tion function in the form of Eq. (C1) with alternative
charges, we suppose that all kinds of heavy domain walls
can be neglected. The origin of the factor 2, entering 7,
is explained above; €, plays the role of the core energy; g
involves the bare exchange constants and temperature, it

g3 (—1)"/In
Lj

i>j

—1
‘”;l =2 (my? +m?) (BS)
ay _
dy
'(1—12—=(2—7rm§K)y2 . (B7)
APPENDIX C

Here we discuss how the floating transition occurs at
the boundary of two-phase equilibrium {n )-{(n +1). As
mentioned in Appendix A, the free energy A of the
secondary domain wall is positive even on the line of the
(n)-{n+1) phase equilibrium. The possibility for a
domain wall to migrate comes from the kinklike excita-
tions which are simultaneously fractional vortices. The
physical meaning of the floating transition lies in the van-
ishing of the free energy of a single secondary domain
wall. If one neglects all kinks resulting in heavy secon-
dary walls, the floating transition problem can be reduced
to the statistical mechanics of a collection of alternating
charges on a line, interacting via a logarithmic potential.
Anderson, Yuval, and Hamann [10] were the first who
applied the renormalization group methods to the prob-
lem of a neutral “one-dimensional Coulomb gas.”

Recall that the secondary domain wall is simply a
stripe with “wrong” width (n +1) within the regular
structure of the primary domain walls spaced a distance n
apart. Any secondary domain wall can be unambiguous-
ly mapped onto a one-dimensional set of fractional vor-
tices (an example is shown in Fig. 11). The inverse trans-
formation is ambiguous: any set of m vortices generates
2™ different secondary domain-wall configurations. The
average distance between such vortices is reasonably sup-
posed to be much larger than the lattice constant. In any
case, a single domain wall propagates diffusively due to
the kinks. Thus these allow us to treat the interaction of
vortices with a good accuracy as dependent only on their
x coordinates. With such assumptions the partition func-
tion of the isolated secondary domain wall has the form

X;—Xx

[
i

is in fact proportional to 1/7. According to the analysis
of Ref. [10] the 1D neutral vortex plasma undergoes an
unbinding transition when renormalized constant g be-
comes smaller than 2. What they perform is a renormal-
ization ante litteram, which results in formulas complete-
ly analogous to the Kosterlitz-Thouless renormalization
equations which appear, for instance, also at the end of
the preceding Appendix.
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